

ORT/RWT Series Transducer
DLL Programmer’s Guide

STCOMMDLL_V5U

Revision 7 - December 2018

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 2

Table of Contents

Introduction .. 4

Compatible Models .. 4

Overview ... 5

Initialising and Accessing a Transducer ... 5

Discovering Transducers .. 6

Data Block Functions .. 10

Torque Types ... 10

Peak Torque .. 10

Peak Torque with AutoReset ... 10

Peak Torque CW ... 11

Peak Torque CCW .. 11

PeakMinMax ... 11

Speed Modes .. 12

Temperature Sensors .. 13

Time Stamp... 13

Data Capture Mode .. 14

Normal/Optimised .. 14

Emulated ... 15

DLL Dependencies ... 22

DLL Type Definitions ... 22

DLL Structures ... 23

ST_DATABLOCK .. 23

MINMAX_TMP .. 25

CAPREC ... 25

VERSIONS .. 26

Status Codes (ST_STATUS) .. 27

DLL Functions .. 28

ST_DLL_Version ... 30

ST_How_Many_Ports .. 31

ST_Port_Name .. 31

ST_Find_Devices .. 32

ST_Find_Device_Status .. 33

ST_Find_Device_Result .. 34

ST_Find_Device_Terminate .. 34

ST_Open_Device .. 35

ST_Close_Device .. 35

ST_Close_ALL_Devices .. 35

ST_GETINFO_Model .. 36

ST_GETINFO_SerialNumber .. 36

ST_GETINFO_ID_String ... 37

ST_GETINFO_Manufacture_Date ... 38

ST_GETINFO_Calibration_Date ... 39

ST_GETINFO_Customer .. 40

ST_GETINFO_ConnectionMethod .. 41

ST_GETINFO_DeviceClass .. 42

ST_GETINFO_Firmware ... 43

ST_GETINFO_FirmwareEx ... 43

ST_GETINFO_FirmwareText .. 44

ST_GETINFO_FSD ... 45

ST_GETINFO_Units .. 46

ST_GETINFO_Max_Speed ... 47

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 3

ST_GETINFO_Speed_Gratings .. 48

ST_GET_Data_Block .. 49

ST_GET_Data_Block_Extract ... 50

ST_GET_Torque_Select ... 52

ST_GET_Torque_Select_Convert ... 53

ST_GET_Torque ... 54

ST_GET_Torque_Peak ... 55

ST_GET_Torque_Auto_Reset ... 55

ST_GET_Torque_Peak_MinMax ... 56

ST_GET_Speed_Fast ... 57

ST_GET_Speed_Slow .. 57

ST_GET_Power_In_Watts .. 58

ST_GET_Power_In_HP .. 59

ST_GET_Temperature_Ambient ... 60

ST_GET_Temperature_Shaft .. 60

ST_GET_Temperature_Internal .. 61

ST_GET_Torque_Filter ... 61

ST_SET_Torque_Filter .. 62

ST_GET_Speed_Filter .. 62

ST_SET_Speed _Filter .. 63

ST_RESET_Peaks .. 64

ST_Zero_Transducer .. 65

ST_ZeroAverage_Transducer ... 65

ST_Reset_TimeStamp .. 66

ST_GET_TimeStamp .. 66

ST_Capture_Enable .. 67

ST_Capture_Disable ... 68

ST_GET_Capture_Data .. 69

ST_GET_Capture_Rate .. 70

Contact Details

Sensor Technology Ltd,
Apollo Park,
Ironstone Lane,
Wroxton,
BANBURY,
OX15 6AY,
United Kingdom.

Sales
Email: stlsales@sensors.co.uk
Tel: +44 (0)1869 238400

Technical Support
Email: software@sensors.co.uk
Tel: +44 (0)1869 238400

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 4

Introduction
The DLL (dynamic link library) provides the programmer with a method of interfacing
a program with an advanced ORT/RWT series transducer, without having to talk
directly using the communication protocol.

The DLL simplifies the use of the USB and RS232 interfaces by providing a unified
interface to access transducers connected via either method; it takes care of the low-
level driver access, protocol negotiation and data manipulation.

Compatible Models
The DLL is compatible with transducers from the advanced ORT and RWT family of
products. Transducers must be running firmware version 3 or higher and have digital
communications enabled.

The table below lists the models that are compatible:

Transducer Family Model Range Models

Optical (ORT) ORT240 ORT240/ORT241

Rayleigh Wave (RWT)

RWT320 RWT320/RWT321/RWT322

RWT340 RWT340/RWT341/RWT342

RWT420 RWT420/RWT421/RWT422

RWT440 RWT440/RWT441/RWT442

Compatible transducers can be identified by the presence of a status LED and serial
number greater than 12200.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 5

Overview
The DLL was written to simplify and speed up the process of developing a custom
application to interact with a transducer.

The DLL is written in C and can be used with a number of other programming
languages. The function descriptions refer to C type variables, but equivalents can be
used in other languages.

The functions available give access to most of the available data and control
functions, the commands for accessing transducers connected by either RS232 or
USB are the same.

The DLL can control up to 10 devices simultaneously, all the programmer need do is
identify the required transducer by passing a device id with each function command.

Initialising and Accessing a Transducer
Before a transducer can be accessed the DLL needs to be initialised by finding
connected transducers. When the DLL initialises it builds a device list in memory of
the transducers that it finds. When a transducer is found the DLL downloads its
configuration and saves the data with the transducer in the list. Device handles and
connection settings are also saved. The list enables quick access to transducer
configuration data and hides some of the complexity of accessing the underlying
interfaces.

Transducers are opened, closed and accessed by providing a device id, the id is a
reference to the device list, and uniquely identifies each connected transducer.
Device id’s start at 0, and are allocated incrementally as transducers are found.

The procedure for interacting with the DLL and subsequently the transducer is
detailed below:

1. Initialise the DLL – Initialise the DLL by calling the ST_Find_Devices
function, this will search the system for connected transducers and build up a
list of the transducers found. The DLL will cache connection and configuration
information from the transducers for local lookup.

2. Identify the attached transducer(s) (Optional) – Use the ST_GETINFO
functions to identify and extract configuration information on the connected
transducers.

3. Open a transducer – Use the ST_Open_Device function to select a
transducer for use. The communication channel that the transducer is
connected to is initialised and resources are allocated. Up to 10 transducers
can be open for use at any time. A transducer will remain open until it is
closed or the process calling the DLL exits.

4. Get data – Use the ST_GET and ST_SET functions to get data and configure
settings on the selected transducer. Open transducers can be accessed at
random.

5. Close a transducer – When access to a transducer is no longer needed, use
the ST_Close_Device or ST_Close_ALL_Devices function to close the
communication channel and free resources for the selected transducer. The
DLL will automatically close all transducers when the calling process exits.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 6

Discovering Transducers
The transducer discovery process is part of the initialisation phase and is initiated
with the ST_Find_Devices function. There are two modes that can be used to
control the discovery process, Mode 1 - Execute and wait and Mode 2 – Execute and
return.

The amount of time required for the discovery process varies depending upon the
number ports on the system and the search filter used. The search filter directs the
discovery process on where it should look for transducers. The filter selected will
have a big impact on how long the discovery process will take and should factor in
the decision on what mode to use.

The first three filter options are always the same, no matter what configuration the
system has. The table below lists the default options:

Filter Value Filter Description

0 All Devices Search on all discovered interfaces.

1 RS232 Search on all available COM ports.

2 USB Search on USB only.

If the system has COM ports all subsequent filter values map the COM ports in
numerical order. The table below shows an example of how a system with three
COM ports (COM2, COM4, and COM5) will map those ports to filter values:

Filter Value Filter Description

3 COM2 Search on COM2 only.

4 COM4 Search on COM4 only.

5 COM5 Search on COM5 only.

The DLL has a set of functions for notifying the calling program on the search options
available. This functionality allows programmers to write an application that isn’t PC
specific. There are two parts to the process to get the list of filters, first get the list
length using the ST_How_Many_Ports function, then retrieve each filter from the list
using the ST_Port_Name function. When calling ST_Port_Name an index number is
required to select between each filter, the index is referenced from 0 and is valid upto
the list length. The index value used to retrieve the filters is also the filter value used
to filter a search.

Transducers connected via USB are easily found as the operating system can be
queried to see if there is a device attached. USB searches occur almost instantly.
Transducers connected via RS232 are more difficult to detect, the detection process
involves sending out a zero byte to request a transducer identification string, if the
correct response is received the DLL will cache the transducers configuration and
continue to the next search option as defined by the filter, if a timeout or a incorrect
response occurs, the DLL will switch to a different baud rate and query the
transducer again, this process repeats for each of the three baud rates available.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 7

When RS232 is used as a search filter, it is recommended that mode 2 be used, as
mode 1 can often cause your program to hang or receive the “not responding”
message. If you specify a single COM port or only have one COM port and the
transducer is connected to that port, then the mode does not matter as the
transducer will be found almost instantly. The program hang will only be apparent
when you have a COM port without a transducer attached.

Mode 1 – Execute and wait
The execute and wait mode initiates a DLL find device process and will block the
calling process until a search has been completed. When the function call returns the
process will have completed and is ready for the next function call. The execute and
wait mode is selected by setting the waitforcomplete parameter to TRUE.

This mode requires only a single call, if the connection method is known and the filter
is selected accordingly, then mode 1 is the best option.

Mode 2 – Execute and return
The execute and return mode initiates a DLL find device process and returns
execution back to the calling process. When the find device process initiates it
spawns a new thread where the search is run. Until the process completes you
cannot open or access a transducer.

While the find device process is running it will need to be monitored for progress and
completion. Process monitoring is accomplished by using the
ST_Find_Device_Status function, which will provide information on the progress
percentage and the number of devices found. The ST_Find_Device_Status function
will return success when the find device process has completed, when this occurs
call the ST_Find_Device_Result function to deallocate used resources and enable
devices to be openned.

While the find device process is being monitored using ST_Find_Device_Status, the
GET_INFO commands can be used to retrieve information on transducers that have
been found.

The execute and return mode is selected by setting the waitforcomplete parameter to
FALSE.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 8

The flow chart below shows an example of how to use the discovery process in mode
2. The example is based on a simple form with a progress bar and list box.

Start

Start

Find Device

Discovery Process

Stop

New Thread

if status =

ST_FD_SEARCH_IN_PROGRESS

dev_proc = 0

Progress Bar = 0

Progress Bar Max = 100

List Box Clear

if status =

ST_FD_SEARCH_IN_PROGRESS

or ST_SUCCESS

if dev_proc < dev_num

Progress Bar = progress

Function: ST_Find_Device_Status

Parameters

percent_done = progress pointer

devices_found = dev_num pointer

status = Return Value

Function: ST_Find_Devices

Parameters

device_found = NULL

searchfilter = 0 (Search All)

waitforcomplete = FALSE

status = Return Value

FALSE

TRUE

TRUE

FALSE

TRUE

FALSE

Message Box - "Error"

Stop

1 2 3 4

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 9

if statusb = ST_SUCCESS

List Box add item = identification

if status = ST_SUCCESS

Function: ST_GETINFO_ID_String

Parameters

device_id = dev_proc

id_string = identification pointer

bufsize = 60

statusb = Return Value

Message Box - "Error"

Stopdev_proc = dev_proc + 1

Function: ST_Find_Device_Result

Parameters

devices_found = dev_num pointer

wait = FALSE

status = Return Value

if status = ST_SUCCESS

Message Box - "Error"

Stop

Message Box - "Found " + dev_num + " Transducers

TRUE

FALSETRUE

FALSE

TRUE

FALSE

1 3 42

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 10

Data Block Functions
The DLL includes two block capture functions which transfer complete data sets from
the connected transducer. These functions enable convenient access to all available
data with a single function call.

The down side of using these block commands is the amount of data that is
transferred during the transaction. The transfer time required will significantly affect
the maximum achievable capture rate. If sample rate is important, you may wish to
consider using the data capture mode, alternatively the single data request functions
can be used.

Torque Types
The primary purpose of the ORT/RWT series transducers is to measure torque, the
torque value that is output from the transducer is run through several processes
within the firmware, these processes include a filter (if enabled), frequency to torque
rescaling, temperature correction and zero offset adjustment. The filter is a running
average with a standard deviation cut off to remove spurious readings, the running
average enables the sample throughput to be unaffected by filter size.

Once the final torque value is computed it is run though a peak torque capture
algorithm. The peak torque algorithm monitors the incoming data and compares it
against a set of stored values using various criteria. If the value matches the criteria,
that value replaces the stored value. In most cases the criterion is related to whether
the captured value is greater than the stored value.

Peak values assume a reset position on start-up, when peak values are reset they
are set to zero, PeakMinMax values are set to the current torque value.

The peak torque algorithm is run on every valid torque reading captured, ensuring
that no peak value is missed.

The torque value unless specified will always be scaled in the native unit of
measurement for the transducer.

The following subsections describe the different types of peak torque.

Peak Torque
The peak torque value indicates the highest torque applied to the transducer
in either direction. The value is signed to indicate the direction that the torque
was applied in.

Peak Torque with AutoReset
The peak torque with auto reset is similar to the peak torque feature, it works
in the same way by recording the maximum torque, but automatically resets
to zero when the current torque value drops below a configured percentage of
the peak value. When the reset triggers the peak is held for a few seconds
before it is zeroed.

The default auto reset percentage is 80%; the percentage can be configured
using the “Transducer Control Utility”, which accompanies our advanced
transducers.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 11

Peak Torque CW
The peak torque CW value records the highest torque value measured in the
clockwise direction.

Peak Torque CCW
The peak torque CCW value records the highest torque value measured in
the counter-clockwise direction.

PeakMinMax
The PeakMinMax feature monitors the captured torque values and records
the lowest and highest value from a reference position. This reference is
given via the ST_RESET_Peaks command and assumes zero on power on.
An example of the PeakMinMax feature is as follows: if the reference is set to
10, then the torque value goes up by 10 and down by 12, Max would be 20
and Min would be -2.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 12

Speed Modes
Speed is decoded from a square wave signal, produced by a shaft mounted grating
passing through an optical sensor. The frequency of the square wave indicates the
rotational speed of the shaft. The transducer uses two methods for the measurement
of speed, both methods run simultaneously, offer good accuracy, but differ in
measurement time. Speed is always measured in revolutions per minute (RPM).

Slow – The slow method uses a frequency count. Rising edges of the square
wave are counted over a period of a second, and then calculated into RPM.
As the name suggests this method is slow as measurements will be produced
at a rate of 1 a second. This method is good if you have a fluctuating drive
speed and wish to filter the captured speed value.

Fast – The fast method uses a period count. The period count measures the
time between rising edges of the square wave, then computes the RPM by
turning the time into frequency. The fast methods measurement rate is
variable and is directly related to the rotational speed of the transducer. When
the rotational speed of the shaft rises above 2000 RPM the fast method will
increase the number of rising edges over which time is measured, this is done
to preserve measurement accuracy.

The fast methods measurement rate can be calculated from the following
tables. The measurement rate differs between the 300 series and 400 series
because of a different implementation. The calculations shown are based on
a standard 60 line grating.

RWT320/340 (MKII)

Rotational Speed (RPM)
Update Rate (Hz)

From To

0 1 Hz

1 2000 RPM / 2

2000 4000 ((RPM – 2000) x 0.3227) + 650

4000 8000 ((RPM – 4000) x 0.196) + 800

8000 16000 ((RPM – 8000) x 0.1117) + 850

16000 32000 ((RPM – 16000) x 0.058) + 900

ORT240/RWT420/440 (MKIII)

Rotational Speed (RPM) Update Rate (Hz)

0 1 Hz

< 2000 RPM

> 2000 RPM x (1 / ((RPM - 1) / 2000 + 1))

Both modes have there own peak monitor to record the highest measured
speed.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 13

Temperature Sensors
The transducer monitors temperature from three different sensors, these are defined
as ambient, shaft and internal. The shaft temperature is the only one which is used
for compensation; the other two are for monitoring only. The transducer measures
temperature in degrees Celsius.

Ambient – The ambient sensor is mounted in free air, stood off from the PCB
it is mounted to.

Shaft – The shaft sensor is an infra-red device that is pointed directly at the
centre of the shaft.

Internal – The internal sensor is part of the communications processor on the
main processing board.

Some board revisions may not feature all three sensors. In a case where the sensor
is missing, the sensor value will be taken from another sensor. The shaft sensor is
always present.

Time Stamp
The DLL has a primitive time stamping system based on elapsed time in
milliseconds; the elapsed time is counted from a fixed point controlled by the user.
The time stamp is not directly linked to the transducer readings, but should give an
approximate correlation between the reading and time, provided that the commands
to request data and the time stamp are called together.

The start point from which the elapsed time is counted is controlled by the
ST_Reset_TimeStamp function. The elapsed time from the start point can be
retrieved using the ST_GET_TimeStamp function. If the time stamp is not initialised,
any call to get the elapsed time will return zero.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 14

Data Capture Mode
The data capture mode is a mechanism which automatically captures data from a
connected transducer at a user specified rate. Data can be captured at rates
anywhere from 1 capture per second to up to 50000 captures per second.

The main purpose of the data capture mode is to extract data from a transducer at
high capture rates. High capture rates are only possible when using USB and
through a combination of specially optimised hardware and firmware. These
optimisations are only present on ORT/RWT transducers with firmware greater than
5. For non-optimised transducers or when using RS232, the data capture mode will
operate in an emulation mode.

The operating system timers must be capable of a 1ms resolution for the capture
system to work. The DLL will request the timer resolution on initialisation and request
a 1ms resolution.

The following table outlines the differences in capture rate between normal/optimised
and emulation mode.

Mode
Connection

Method
Baud Rate

Maximum
Capture Rate
(Records Per

Second)

Normal/Optimised
ORT Series

USB 12 Mbps

Up to 50000

Normal/Optimised
RWT Series

Up to 10000

Emulated

200

RS232

9600 bps 5

38400 bps 10

115200 bps 50

The following sections give a brief overview of how the modes work.

Normal/Optimised – (USB and Firmware Version 5 or greater)
The optimised mode is used when the data capture is activated with a
compliant transducer using USB.

The optimised mode achieves its higher capture rates by fully utilising the
bandwidth available on the USB bus. In order to achieve this, a bulk
packeted buffered approach is required.

When the data capture mode is activated the DLL tells the transducer to
initiate a continuous self timed capture at the users requested rate. The
captured data is written to one of sixteen buffers. When a buffer is full it is
marked for transfer, If no transfer is active a transfer is initiated. If a buffer is

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 15

filled before the previous buffer transfer has been initiated, the newly filled
buffer is chained to the previous buffer. The sixteen buffer design should
protect against data loss should the DLL be starved of CPU time or the USB
bus is busy. The transducer will automatically deactivate the capture mode if
all sixteen buffers become filled and a seconds worth of data is lost.

Each USB transfer is 836 bytes in size and uses a dedicated transmission
pipe, the use of a secondary pipe allows the transducer to respond to data
requests in the normal manner. At high data rates the transducer should not
be interupted with any other data request.

Each data transfer contains a header and 100 record sets. The header
contains a base time stamp, record time increments, temperature readings
and slow speed reading. A record set contains a single torque and fast speed
reading.

The maximum capture rate achievable will depend upon the transducer
technology and transducer tuning. RWT transducers with an optimal setup
can achieve a capture rate of 10KHz. Shipped transducers are typically
around 5KHz to 6KHz. ORT transducers are capable of capturing data at
50KHz.

To establish the capture rate capability of a transducer, use the
ST_GET_Capture_Rate function, which returns the capture rate measured
by the transducer.

When using this mode be aware that USB is a host controlled bus based
architecture and can be effected by other bus traffic or host activity. The
capture rate requested should consider the amount of data that will be
generated, the number of active USB devices and the load on the host PC. It
may be necessary to reduce the capture rate to achieve reliable operation.

In this mode, the capture rate and timestamp are generated from the
transducers core clock. Any variance in the core clock will cause the data
capture and time stamp to slide from real time, the per reading error will be
very small, but over millions of cycles it may slide out.

Emulated – (RS232 or non-optimised transducers)
The emulated mode is used when the connected transducer is using RS232
or does not have the right firmware.

Emulated mode polls the transducer for data using the ST_GET_Data_Block
function. The timestamp is applied when the data is received and is the
elapsed time in microseconds from activation.

Data capture is triggered by a waitable timer, whose accuracy, resolution and
prompt execution isn’t guaranteed. In this mode, data capture is at the mercy
of the Windows scheduler, to improve execution success the DLL raises the
capture thread priority level.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 16

Data Capture Mode Operation
The data capture mode operates within its own thread and its priority is elevated to
ensure CPU access. Data captures are triggered by a timer which is configured to
trigger at the capture frequency. Captured data is inserted into a ring buffer which
can accessed by both the capture thread and the users thread.

The ring buffer is made up of 262,144 CAPREC records (refer to the DLL Structures
section for a definition). Each record contains information on one category of data,
e.g. Torque, Speed, or Temperature.

The table below shows the record layout.

Field Description

Time Record timestamp which is the offset in milliseconds from start.

Type Type identifies the category of data.

Value Data value.

The type field is a numeric value, the table below identifies the different categories
and there corresponding key values.

Type Key Value DLL Definition

Torque 0 CAPREC_TORQUE

Speed (Fast) 1 CAPREC_SPEED_FAST

Speed (Slow) 2 CAPREC_SPEED_SLOW

Temperature (Shaft) 3 CAPREC_TEMP_SHAFT

Temperature (Ambient) 4 CAPREC_TEMP_AMB

The ring buffer is accessed using a read and write pointer, it is important that the
user reads the buffer frequently enough so as to avoid the head reaching the tail. If
the buffer becomes full the data capture will terminate.

The data capture mode is activated by calling the ST_Capture_Enable function. The
enable function requires the user to specify the capture rate that they require. The
value can be anything between 1 and the maximum capture rate available. The
ST_GET_Capture_Rate function should be used to retrieve the maximum.

The capture rate specifies the rate at which the transducer will be polled or requested
to capture data. The capture rate does not directly indicate how many records will be
generated per second.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 17

The following calculations can be used to calculate the number records that will be
generated from a given capture rate.

Normal/Optimised

Emulated

Data is transferred from the ring buffer by using the ST_GET_Capture_Data
function. The user is required to pass an array of CAPREC records and notify the
function of the array depth. The function copies records from the ring buffer to the
array until the array is full or there are no further records to be copied. On function
completion the number records written to the array will be returned.

The array depth, ST_GET_Capture_Data call frequency and capture rate should all
be considered when writing a program which uses the data capture mode. There is
some overhead in ensuring thread syncronisation so a small array and high call
frequency is not recommended.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 18

The following table shows a sample set of data captured from a transducer. The
capture is using the optimised mode and configured to run at 5Hz. The table shows 2
seconds of data.

Time Type Value

0 2 0

0 3 25

0 4 25

0 0 0.1

0 1 0

200 0 0.1

200 1 0

400 0 0.1

400 1 0

600 0 0.1

600 1 0

800 0 0.1

800 1 0

1000 2 0

1000 3 25

1000 4 25

1000 0 0.1

1000 1 0

1200 0 0.1

1200 1 0

1400 0 0.1

1400 1 0

1600 0 0.1

1600 1 0

1800 0 0.1

1800 1 0

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 19

The following table shows a sample set of data captured from a transducer. The
capture is using the emulated mode and configured to run at 5Hz. The table shows 1
second of data.

Time Type Value

0 0 0.1

0 1 0

0 2 0

0 3 25

0 4 25

200 0 0.1

200 1 0

200 2 0

200 3 25

200 4 25

400 0 0.1

400 1 0

400 2 0

400 3 25

400 4 25

600 0 0.1

600 1 0

600 2 0

600 3 25

600 4 25

800 0 0.1

800 1 0

800 2 0

800 3 25

800 4 25

When the capture mode is no longer required it should be stopped so that its
resources can be released. To stop an active capture call the ST_Capture_Disable
function. Once called the capture thread will be stopped and the ring buffer will be
cleared and released.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 20

The flow chart below demonstrates a simple program which uses the data capture
mode to capture 10000 records at the maximum capture rate.

Start

Function: ST_Find_Devices

Parameters

device_found = numfound pointer

searchfilter = 0 (Search All)

waitforcomplete = TRUE

status = Return Value

if status = ST_SUCCESS

and numfound = 1

Function: ST_Open_Device

Parameters

device_id = 0

status = Return Value

if status = ST_SUCCESS

Function: ST_GET_Capture_Rate

Parameters

device_id = 0

caprate = maxcaprate pointer

status = Return Value

recarray = allocate array of CAPREC records [2000]

rec_captured = 0

Function: ST_Capture_Enable

Parameters

device_id = 0

caprate = maxcaprate

status = Return Value

if status = ST_SUCCESS

and maxcaprate > 0

FALSE

TRUE

1 2 3

FALSE

TRUE

TRUE

FALSE

Message Box - "Error"

Message Box - "Error"

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 21

Function: ST_GET_Capture_Data

Parameters

device_id = 0

record_ptr = recarray pointer

records = 2000

recordno = recwrite pointer

status = Return Value

if status = ST_SUCCESS

rec_captured = rec_captured ��������

if rec_captur�e � �����

TRUE

Function: ST_Captur	
����le

Parameters

device_id = 0

status = Return Value

Function: ST_Close_�	D��	

Parameters

device_id = 0

status = Return Value

Free recarray

FALSE

FALSE

TRUE

if status = ST_SUCCESS

TRUE

FALSE

1 2

Stop

3

Message Box - "Error"

Message Box - "Success"

Message Box - "Error"

if recwrite > 0

Process new records

FALSE

TRUE

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 22

DLL Dependencies
The DLL was built using Microsoft Visual Studio 2013 and requires the 2013 C
Runtime Libraries. The DLL is dynamically linked to the runtime and will need to have
the appropriate 2013 C Runtime Libraries installed. The CRT redistributable can be
downloaded from Microsoft (https://www.microsoft.com/en-
gb/download/details.aspx?id=40784).

In addition to the runtime library, a USB driver library (libusb0.dll) must be present.
The library allows the DLL to interface with the transducers USB driver. Ensure that
the USB DLL is accessible by STCOMMDLL_V5U.dll, either by being in the same
directory or accessible via the PATH environmental variable. Older versions of the
DLL required different USB drivers and dependencies. DLL version 4.1.8 switches to
a unified USB driver, which supports both MKII and MKIII transducers.

DLL Type Definitions
A number of custom defined variable types have been used in the DLL functions, the
non-standard types have been defined in the table below:

Type Definition Data Type

ST_STATUS unsigned long (4 bytes)

UCHAR unsigned char (1 byte)

UINT16 unsigned short / int (2 bytes)

DWORD unsigned long (4 bytes)

INT32 long (4 bytes)

BOOL unsigned long (4 bytes)

UINT64 unsigned long long (8 bytes)

Most of the above types are defined in the Windows API.

BOOL – The table below shows that mapping between boolean value and numeric
value.

Boolean Value Numeric Value

TRUE 1

FALSE 0

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 23

DLL Structures
Structures are used frequently within the DLL to pass multiple related variables in a
single block and passed in a single parameter.

ST_DATABLOCK
The ST_DATABLOCK type is a structure that contains a complete transducer
data set. The data set contains all the data that can be captured from the
transducer.

The structure is split up into sub structures, each one related to a specific
category of data.

Torque
The torque values use the native unit of measurement of the
Transducer.

Type Name Description

float Torque Current torque value.

float Torque_Peak Peak torque value.

float Torque_Auto_Reset
Peak torque value with
auto reset.

float Torque_Peak_CW
Peak Torque value in the
CW direction.

float Torque_Peak_CCW
Peak Torque value in the
CCW direction.

MINMAX_TMP MinMax
Lowest/Highest torque
value.

 Speed (slow/fast modes explained in the speed section).

All measurements are output in RPM.

Type Name Description

INT32 Slow
Current speed value from
the slow capture mode.

INT32 Fast
Current speed value from
the fast capture mode.

INT32 Slow_Peak
Peak speed value from the
slow capture mode.

INT32 Fast_Peak
Peak speed value from the
fast capture mode.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 24

Angle

If an Angle sensor is not fitted, the speed pulses are used to generate
the rotations and degrees in a incremental mode. The accuracy in this
mode may be affected by external conditions.

Power (slow/fast modes explained in the speed section).

Type Name Description

float Watts_Slow
Power in watts calculated
from the last torque and
slow speed value.

float Watts_Fast
Power in watts calculated
from the last torque and
fast speed value.

float Peak_Watts_Slow
Peak power in watts,
based on the speed from
the slow capture mode.

float Peak_Watts_Fast
Peak power in watts,
based on the speed from
the fast capture mode.

float HP_Slow
Power in HP calculated
from the last torque and
slow speed value.

float HP_Fast
Power in HP calculated
from the last torque and
fast speed value.

float Peak_HP_Slow
Peak power in HP, based
on the speed from the
slow capture mode.

float Peak_HP_Fast
Peak power in HP, based
on the speed from the fast
capture mode.

Type Name Description

INT32 Rotations Shaft rotations.

INT32 Degrees
Shaft rotation in degrees
from reset point/last
rotation.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 25

Temperature (degrees Celsius)

Type Name Description

float Ambient Ambient temperature.

float Shaft Shaft temperature.

MINMAX_TMP

The MINMAX_TMP structure is comprised of min and max torque variables.

Type Name Description

float max
Maximum torque value
from reference/reset.

float min
Minimum torque value
from reference/reset.

CAPREC

The CAPREC structure is used with the embedded data capture mode.

Type Name Description

UINT64 time
Elapsed time in
microseconds (µs).

UINT32 type

Data identifer. Type
defines what value is, e.g.
Torque/Speed.

Refer to the Data Capture
Mode section for a table of
values.

float value Captured reading.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 26

VERSIONS

The VERSIONS structure contains the transducer firmware revision. For
firmware earlier than 5, the revision is converted from a simpler M.m format
and the build is 1.

Type Name Description

UINT32 firm_type Internal use descriptor

UINT16 firm_rev

Fimware revision in
Binary-Coded Decimal.

Format (Hex): 0xMMms

M = Major
m = Minor
s = Sub Minor

Example: 0x0122 = 1.2.2

UINT16 firm_build Firmware build number

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 27

Status Codes (ST_STATUS)
Most functions defined in the DLL return a ST_STATUS message; this message
acknowledges either a successful execution or a failure of some kind.

The table below lists the status codes and associated messages, the status codes
are defined in the DLL header file as listed:

Status
Code

Status Message DLL Definition

0 Success ST_SUCCESS

1 Busy ST_BUSY

2 Command Active ST_CMD_ACTIVE

3 Command Pending ST_CMD_ACTIVE_PENDING

4 Command Complete ST_CMD_ACTIVE_COMPLETE

5 Command Inactive ST_CMD_INACTIVE

6 Failure ST_FAILURE

7 Device Not Open ST_DEVICE_NOT_OPEN

8 Checksum Error ST_CHECKSUM_ERROR

9 Device Invalid ST_DEVICE_INVALID

10 Buffer Too Small ST_BUFFER_TOO_SMALL

11 Not Available In Firmware ST_NOT_AVAILABLE_WITH_FIRMWARE

12 No Communications In Progress ST_NO_COMMS_IN_PROCESS

13 Search In Progress ST_FD_SEARCH_IN_PROGRESS

14 Too Many Requests ST_TOO_MANY_REQUESTS

15 Access Violation ST_ID_VALID_ACCESS_VIOLATION

16 Feature Not Fitted ST_FEATURE_NOT_FITTED

17 Parameter Error ST_PARAMETER_ERROR

19 Speed not fitted. ST_SPEED_NOT_FITTED

20 Analog selection invalid. ST_ANALOG_NOT_SELECTED

21 Analog channel not calibrated. ST_ANALOG_NOT_CALIBRATED

22 Internal Flag ST_FD_TERMINATED

23 Internal Buffer Overflow ST_BUFFER_OVERFLOW

24 1ms timer resolution not possible ST_WINDOWS_TIMER_RESOLUTION

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 28

DLL Functions
The DLL provides access to most of the available data and control features of the
attached transducers. The following table summarises each of the DLL functions.

Functions Function Description

ST_DLL_Version DLL code version.

ST_How_Many_Ports Get the filter list length.

ST_Port_Name Get filter name for index.

ST_Find_Devices Initialise DLL and initiate find device process.

ST_Find_Device_Status Get the status of the running find device process.

ST_Find_Device_Result Get the result of the find device process.

ST_Find_Device_Terminate Terminate a find device process.

ST_Open_Device Open a transducer for use.

ST_Close_Device Close an open transducer.

ST_Close_ALL_Devices Close all open transducers.

ST_GETINFO_Model Get transducer model number.

ST_GETINFO_SerialNumber Get transducer serial number.

ST_GETINFO_ID_String Get transducer ID string (model, serial, firmware).

ST_GETINFO_Manufacture_Date Get transducer manufacture date.

ST_GETINFO_Calibration_Date Get transducer calibration date.

ST_GETINFO_Customer Get the registered customer name.

ST_GETINFO_ConnectionMethod
Get the connection method for the attached
transducer.

ST_GETINFO_DeviceClass Get transducer technology class.

ST_GETINFO_Firmware Get transducer firmware revision (legacy).

ST_GETINFO_FirmwareEx Get detailed transducer firmware revision.

ST_GETINFO_FirmwareText Decode transducer firmware revision.

ST_GETINFO_FSD Get transducer FSD value.

ST_GETINFO_Units Get transducer native unit of measurement.

ST_GETINFO_Max_Speed Get transducer maximum rated speed.

ST_GETINFO_Speed_Gratings Get transducer grating size.

ST_GET_Data_Block1 Get transducer data set.

ST_GET_Data_Block_Extract1 Get transducer data set.

ST_GET_Torque_Select1 Get selected torque value.

ST_GET_Torque_Select_Convert1 Get selected torque value and convert to unit.

ST_GET_Torque1 Get current torque value.

ST_GET_Torque_Peak1 Get peak torque value.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 29

ST_GET_Torque_Auto_Reset1 Get peak torque with auto reset value.

ST_GET_Torque_Peak_MinMax1 Get PeakMinMax value.

ST_GET_Speed_Fast1 Get fast mode speed value.

ST_GET_Speed_Slow1 Get slow mode speed value.

ST_GET_Power_In_Watts1 Get current power in Watts.

ST_GET_Power_In_HP1 Get current power in HP.

ST_GET_Temperature_Ambient1 Get ambient temperature.

ST_GET_Temperature_Shaft1 Get shaft temperature.

ST_GET_Temperature_Internal1 Get internal sensor temperature.

ST_GET_Torque_Filter1 Get current torque filter setting.

ST_SET_Torque_Filter1 Set torque filter setting.

ST_GET_Speed_Filter1 Get current speed filter setting.

ST_SET_Speed_Filter1 Set speed filter setting.

ST_RESET_Peaks1 Reset torque, speed, power peaks.

ST_Zero_Transducer1 Zero transducer torque value.

ST_ZeroAverage_Transducer1 Zero transducer with an averaged torque value.

ST_Reset_TimeStamp Initialise/reset timestamp to zero.

ST_GET_TimeStamp Get elapsed time.

ST_Capture_Enable1 Enable capture mode.

ST_Capture_Disable1 Disable capture mode.

ST_GET_Capture_Data1 Get captured data.

ST_GET_Capture_Rate1 Get maximum capture rate.

1 Transducer must be open to use command.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 30

ST_DLL_Version
The ST_DLL_Version function returns the version and build of the DLL.

 Void ST_DLL_Version(
 DWORD *version,

DWORD *build
);

 Parameters

version pointer to a variable of type DWORD that receives the DLL
version.

build pointer to a variable of type DWORD that receives the DLL
build number.

Return value
None

Remarks
The format of the version number is in the format major.minor. The upper
nibble of the lowest byte is the major version, while the lower nibble of the
lowest byte is the minor version.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 31

ST_How_Many_Ports
The ST_How_Many_Ports function returns the number of searchable options/filter
items.

 ST_STATUS ST_How_Many_Ports(

DWORD *portcount
);

 Parameters

portcount pointer to a variable of type DWORD that receives the number
of items in the filter list.

Return value
If successful the function will return ST_SUCCESS, if an error occurs
ST_FAILURE will be returned.

Remarks
Use the ST_PORT_NAME function to retrieve the name of each filter item, list
indexes are valid upto the value of portcount.

ST_Port_Name
The ST_Port_Name function returns the filter name for the requested filter index.

 ST_STATUS ST_Port_Name(

DWORD portref,
char *port_string,
DWORD bufsize
);

 Parameters

portref index of the filter name to retrieve, valid indexes are from 0 to
the number of filters in the list.

port_string pointer to an array of characters to receive the filter name. The
maximum string length that will be returned is 20 characters
long.

bufsize size of the buffer passed in the port_string parameter.

Return value
If successful the function will return ST_SUCCESS, if an error occurs
ST_FAILURE will be returned.

Remarks
The returned string will be null terminated.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 32

ST_Find_Devices
The ST_Find_Devices function initialises the DLL and searches the system for
connected transducers; it builds a list of connected transducers and caches
configuration and connection information for each.

ST_STATUS ST_Find_Devices(
DWORD *devices_found,
DWORD searchfilter,
BOOL waitforcomplete
);

 Parameters

devices_found pointer to a variable of type DWORD that receives the
number of transducers found.

searchfilter selects the interfaces/ports that the find device process
should use to find connected transducers.

waitforcomplete boolean value to control the execution mode of the find
device process. If TRUE, mode 1 - execute and wait
will be selected. If FALSE, mode 2 – execute and return
will be selected. Refer to the Discovering Transducers
section for more information.

Return value
If successful the function will return ST_SUCCESS, if the function was called
with the waitforcomplete parameter set to FALSE the function will return
ST_FD_SEARCH_IN_PROGRESS. If an error occurs ST_FAILURE will be
returned.

Remarks
When using mode 2 - execute and return (waitforcomplete = FALSE) use the
ST_Find_Device_Status function to monitor the progress of the find device
process, when complete use the ST_Find_Device_Result function to
complete the discovery process. The ST_Find_Device_Result function is
automatically called when using mode 1 - execute and wait (waitforcomplete
= TRUE).

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 33

ST_Find_Device_Status
The ST_Find_Device_Status function returns the status of a find device process.

ST_STATUS ST_Find_Device_Status (

DWORD *percent_done,
DWORD *devices_found
);

 Parameters

percent_done pointer to a variable of type DWORD that receives the
find device progress in percent.

devices_found pointer to a variable of type DWORD that receives the
number of transducers found by the find device
process.

Return value
If a transducer search has completed the function will return ST_SUCCESS, if
a transducer search is still in progress ST_FD_SEARCH_IN_PROGRESS will
be returned. If an error has occurred ST_FAILURE will be returned.

Remarks
The ideal way to use the ST_Find_Device_Status function is to display the
progress percentage on a progress bar and as transducers are found use the
GET_INFO functions to display identification information.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 34

ST_Find_Device_Result
The ST_Find_Device_Result function completes the find device process initiated by
ST_Find_Devices. The function will deallocate the resources used by the search
and enables devices to be openned.

ST_STATUS ST_Find_Device_Result(
DWORD *devices_found,
BOOL wait
);

 Parameters

devices_found pointer to a variable of type DWORD that receives the
final number of transducers found by the search
process. devices_found is only valid when the return
value is ST_SUCCESS.

wait boolean value to select whether the function should
wait if a find device process is still in progress. If TRUE
the function will block until the find device process has
completed, if FALSE and a search is still in progress
ST_FD_SEARCH_IN_PROGRESS will be returned.

Return value
If a find device process has completed successfully ST_SUCCESS will be
returned, if a search process is still in progress
ST_FD_SEARCH_IN_PROGRESS will be returned, if an error occurs
ST_FAILURE will be returned.

Remarks
ST_Find_Device_Result only needs to be called when using the find device
process in execute and return mode 2 (ST_Find_Devices – waitforcomplete
= FALSE) and ideally when the ST_GET_Process_Status indicates
completion. When using the find device process in execute and wait mode 1,
the ST_Find_Device_Result function is automatically called.

ST_Find_Device_Terminate
The ST_Find_Device_Terminate function terminates an active find device process.
The function will deallocate the resources used by the search and clear the
transducer list of all entries.

ST_STATUS ST_Find_Device_Terminate (void);

 Parameters
 None

Return value
If a find device process was successfully terminated the function will return
ST_SUCCESS, if no search was active the function will return
ST_CMD_INACTIVE, if an error occurs ST_FAILURE will be returned.

Remarks
A find device termination request can take upto 4 seconds to complete, during
this time the calling process will be blocked. The function will first attempt to
stop the process cleanly by triggering an event, if the thread does not finish
within 4 seconds it is terminated.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 35

ST_Open_Device
The ST_Open_Device function opens a transducer for use with the DLL.

 ST_STATUS ST_Open_Device(

DWORD device_id
);

 Parameters

device_id device id of the transducer to open, id’s are indexed from 0 up
to the number of transducers found.

 Return value

If a transducer is opened successfully the function will return ST_SUCCESS,
if the device_id is invalid ST_DEVICE_INVALID will be returned, if an error
occurs ST_FAILURE will be returned.

Remarks
ST_Find_Devices needs to have been run before a transducer can be
opened.

ST_Close_Device
The ST_Close_Device function closes an open transducer, a transducer should
always be closed before a program using the DLL exits.

ST_STATUS ST_Close_Device(
DWORD device_id,
BOOL force
);

 Parameters

device_id device id of the transducer to close, id’s are indexed from 0 up
to the number of devices found.

force reserved – set to FALSE.

Return value
If an open device is successfully closed, ST_SUCCESS will be returned, if the
device is not open ST_DEVICE_NOT_OPEN will be returned, if the device_id
is invalid ST_DEVICE_INVALID will be returned, if an error occurs
ST_FAILURE will be returned.

ST_Close_ALL_Devices
The ST_Close_ALL_Devices function closes all open transducers, a transducer
should always be closed before a program using the DLL exits.

ST_STATUS ST_Close_ALL_Devices(void);

Parameters
None

Return value
If all open devices are closed successfully, ST_SUCCESS will be returned, if
an error occurs ST_FAILURE will be returned.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 36

ST_GETINFO_Model
The ST_GETINFO_Model function returns the model name of the referenced
transducer.

ST_STATUS ST_GETINFO_Model(
DWORD device_id,
char *model_string,
DWORD bufsize
);

Parameters
device_id device id of the transducer to retrieve the model name of.
model_string pointer to an array of chars, the maximum string length is 10.
bufsize length of the array passed.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid ST_DEVICE_INVALID will be returned, if the buffer
passed to the function is too small ST_BUFFER_TOO_SMALL will be
returned, otherwise FT_FAILURE will be returned.

Remarks
The returned string will be null terminated. The device does not need to be
open to use this function and it can be called during the find device process,
provided that the waitforcomplete parameter is FALSE and the device id is
less than the number of devices found.

ST_GETINFO_SerialNumber
The ST_GETINFO_SerialNumber function returns the serial number in string form of
the referenced transducer.

ST_STATUS ST_GETINFO_SerialNumber(
DWORD device_id,
char *serial_string,
DWORD bufsize
);

Parameters
device_id device id of the transducer to retrieve the serial number of.
serial_string pointer to an array of chars, the maximum string length is 9.
bufsize length of the array passed.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid ST_DEVICE_INVALID will be returned, if the buffer
passed to the function is too small ST_BUFFER_TOO_SMALL will be
returned, otherwise FT_FAILURE will be returned.

Remarks
The returned string will be null terminated. The device does not need to be
open to use this function and it can be called during the find device process,
provided that the waitforcomplete parameter is FALSE and the device id is
less than the number of devices found.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 37

ST_GETINFO_ID_String
The ST_GETINFO_ID_String function returns the ID string of the referenced
transducer. The ID is a generic identifier which lists the model, serial and firmware
revision.

ST_STATUS ST_GETINFO_ID_String(
DWORD device_id,
char *id_string,
DWORD bufsize
);

Parameters
device_id device id of the transducer to retrieve the ID of.
id_string pointer to an array of chars, the maximum string length is 59.
bufsize length of the array passed.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid ST_DEVICE_INVALID will be returned, if the buffer
passed to the function is too small ST_BUFFER_TOO_SMALL will be
returned, otherwise FT_FAILURE will be returned.

Remarks
The returned string will be null terminated. The device does not need to be
open to use this function and it can be called during the find device process,
provided that the waitforcomplete parameter is FALSE and the device id is
less than the number of devices found.

ID string format:

[MODEL] - Firmware Revision: [FIRMWARE] Serial Number: [SERIAL]

Parameters have a fixed length:

MODEL – 9, FIRMWARE – 3, SERIAL – 8

Example: RWT321-DC - Firmware Revision: 3.6 Serial Number: 00000123

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 38

ST_GETINFO_Manufacture_Date
The ST_GETINFO_Manufacture_Date function returns the manufacture date of the
referenced transducer. The date format used is DD/MM/YYYY.

ST_STATUS ST_GETINFO_Manufacture_Date(
DWORD device_id,
char *manufacture_date,
DWORD bufsize
);

Parameters
device_id device id of the transducer to retrieve the manufacture

date of.
manufacture_date pointer to an array of chars, the maximum string length

is 11.
bufsize length of the array passed.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid ST_DEVICE_INVALID will be returned, if the buffer
passed to the function is too small ST_BUFFER_TOO_SMALL will be
returned, otherwise FT_FAILURE will be returned.

Remarks
The returned string will be null terminated. The device does not need to be
open to use this function and it can be called during the find device process,
provided that the waitforcomplete parameter is FALSE and the device id is
less than the number of devices found.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 39

ST_GETINFO_Calibration_Date
The ST_GETINFO_Calibration_Date function returns the date that the referenced
transducer was last calibrated. The date format used is DD/MM/YYYY.

ST_STATUS ST_GETINFO_Calibration_Date(

DWORD device_id,
char *calibration_date,
DWORD bufsize
);

Parameters
device_id device id of the transducer to retrieve the last

calibration date of.
calibration_date pointer to an array of chars, the maximum string length

is 11.
bufsize length of the array passed.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid ST_DEVICE_INVALID will be returned, if the buffer
passed to the function is too small ST_BUFFER_TOO_SMALL will be
returned, otherwise FT_FAILURE will be returned.

Remarks
The returned string will be null terminated. The device does not need to be
open to use this function and it can be called during the find device process,
provided that the waitforcomplete parameter is FALSE and the device id is
less than the number of devices found.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 40

ST_GETINFO_Customer
The ST_GETINFO_Customer function returns the registered customer name of the
referenced transducer.

ST_STATUS ST_GETINFO_Customer(

DWORD device_id,
char *customer,
DWORD bufsize
);

Parameters
device_id device id of the transducer to retrieve the registered customer

name of.
customer pointer to an array of chars, the maximum string length is 60.
bufsize length of the array passed.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid ST_DEVICE_INVALID will be returned, if the buffer
passed to the function is too small ST_BUFFER_TOO_SMALL will be
returned, otherwise FT_FAILURE will be returned.

Remarks
The returned string will be null terminated. The device does not need to be
open to use this function and it can be called during the find device process,
provided that the waitforcomplete parameter is FALSE and the device id is
less than the number of devices found.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 41

ST_GETINFO_ConnectionMethod
The ST_GETINFO_ConnectionMethod function returns the name of the interface
that the referenced transducer is connected to. The interface is either COM## or
USB.

ST_STATUS ST_GETINFO_ConnectionMethod(

DWORD device_id,
char *connection_method,
DWORD bufsize
);

Parameters
device_id device id of the transducer to retrieve the connection

method of.
connection_method pointer to an array of chars, the maximum string length

is 7.
bufsize length of the array passed.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid ST_DEVICE_INVALID will be returned, if the buffer
passed to the function is too small ST_BUFFER_TOO_SMALL will be
returned, otherwise FT_FAILURE will be returned.

Remarks
The returned string will be null terminated. The device does not need to be
open to use this function and it can be called during the find device process,
provided that the waitforcomplete parameter is FALSE and the device id is
less than the number of devices found.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 42

ST_GETINFO_DeviceClass
The ST_GETINFO_DeviceClass function returns the device class of the referenced
transducer. The device class identifies the type and underlying technology of the
transducer.

ST_STATUS ST_GETINFO_DeviceClass(
DWORD device_id,
DWORD *DC
);

Parameters
device_id device id of the transducer to retrieve the technology class of.
DC pointer to a variable of type DWORD that receives the device

class index. The table below can be used to decode the index.

Index Device Class

1 RWT Integrated – SAW Device

2 ORT Integrated – Optical Device

4 Strain Gauge Device

8 RWT External – SAW Device

16 ORT External – Optical Device

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid then ST_DEVICE_INVALID will be returned, otherwise
FT_FAILURE will be returned.

Remarks
The device does not need to be open to use this function and it can be called
during the find device process, provided that the waitforcomplete parameter is
FALSE and the device id is less than the number of devices found.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 43

ST_GETINFO_Firmware (Legacy)
The ST_GETINFO_Firmware function returns the firmware version (legacy format)
of the referenced transducer.

ST_STATUS ST_GETINFO_Firmware(

DWORD device_id,
float *firmware
);

Parameters
device_id device id of the transducer to retrieve the firmware version of.
firmware pointer to a variable of type float that receives the firmware

version.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid then ST_DEVICE_INVALID will be returned, otherwise
FT_FAILURE will be returned.

Remarks
The device does not need to be open to use this function and it can be called
during the find device process, provided that the waitforcomplete parameter is
FALSE and the device id is less than the number of devices found.

This command is considered legacy, the float variable does not accurately
convey the firmware revision.

ST_GETINFO_FirmwareEx
The ST_GETINFO_FirmwareEx function returns the firmware revision and build of
the referenced transducer.

ST_STATUS ST_GETINFO_FirmwareEx(

DWORD device_id,
VERSIONS *verinfo
);

Parameters
device_id device id of the transducer to retrieve the firmware version of.
verinfo pointer to a variable of type VERSIONS that receives the

firmware information.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid then ST_DEVICE_INVALID will be returned, otherwise
FT_FAILURE will be returned.

Remarks
The device does not need to be open to use this function and it can be called
during the find device process, provided that the waitforcomplete parameter is
FALSE and the device id is less than the number of devices found.

For firmware earlier than 5, the revision is converted from a simpler M.m
format and the build is 1.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 44

ST_GETINFO_FirmwareText
The ST_GETINFO_FirmwareText function decodes the firmware revision and build
of the referenced transducer into a text string.

ST_STATUS ST_GETINFO_FirmwareText(

DWORD device_id,
char *firmwaretxt,
DWORD bufsize);

Parameters
device_id device id of the transducer to retrieve the firmware version of.
firmwaretxt pointer to an array of chars to receive the firmware string. The

maximum string length is 60.
bufsize length of the array passed.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid ST_DEVICE_INVALID will be returned, if the buffer
passed to the function is too small ST_BUFFER_TOO_SMALL will be
returned, otherwise FT_FAILURE will be returned.

Remarks
The device does not need to be open to use this function and it can be called
during the find device process, provided that the waitforcomplete parameter is
FALSE and the device id is less than the number of devices found.

For firmware earlier than 5, the revision is converted from a simpler M.m
format and the build is 1.

Firmware Text Example: 5.2.1 Build 12345

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 45

ST_GETINFO_FSD
The ST_GETINFO_FSD function returns the full scale rating of the referenced
transducer.

ST_STATUS ST_GETINFO_FSD(

DWORD device_id,
DWORD *fsd
);

Parameters
device_id device id of the transducer to retrieve the FSD of.
fsd pointer to a variable of type DWORD that receives the full

scale rating.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid then ST_DEVICE_INVALID will be returned, otherwise
FT_FAILURE will be returned.

Remarks
The device does not need to be open to use this function and it can be called
during the find device process, provided that the waitforcomplete parameter is
FALSE and the device id is less than the number of devices found.

Use the ST_GETINFO_Units function to get the transducers native unit of
measurement for torque.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 46

ST_GETINFO_Units
The ST_GETINFO_Units function returns the native measurement unit of the
referenced transducer. The FSD and all torque values use this unit as the unit of
measurement.

ST_STATUS ST_GETINFO_Units(

DWORD device_id,
DWORD *units
);

Parameters
device_id device id of the transducer to retrieve the measurement unit of.
units pointer to a variable of type DWORD that receives the unit

index. The table below can be used to decode the index.

Index Unit

0 ozf.in

1 Ibf.in

2 Ibf.ft

3 gf.cm

4 Kgf.cm

5 Kgf.m

6 mN.m

7 N.m

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid then ST_DEVICE_INVALID will be returned, otherwise
FT_FAILURE will be returned.

Remarks
The device does not need to be open to use this function and it can be called
during the find device process, provided that the waitforcomplete parameter is
FALSE and the device id is less than the number of devices found.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 47

ST_GETINFO_Max_Speed
The ST_GETINFO_Max_Speed function returns the maximum speed scaling for the
referenced transducer.

ST_STATUS ST_GETINFO_Max_Speed(

DWORD device_id,
DWORD *maxspeed
);

Parameters
device_id device id of the transducer to retrieve the maximum speed of.
maxspeed pointer to a variable of type DWORD that receives the

maximum speed scaling value.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid then ST_DEVICE_INVALID will be returned, if speed isn’t
fitted ST_SPEED_NOT_FITTED will be returned, otherwise FT_FAILURE will
be returned.

Remarks
The device does not need to be open to use this function and it can be called
during the find device process, provided that the waitforcomplete parameter is
FALSE and the device id is less than the number of devices found.

The speed value does not limit the transducers ability to measure higher
speeds, but is the maximum speed that is specified by the customer. The max
speed value is the maximum value that the analog output can be scaled to.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 48

ST_GETINFO_Speed_Gratings
The ST_GETINFO_Speed_Gratings function returns the number of slots in the
speed disk grating.

ST_STATUS ST_GETINFO_Speed_Gratings(

DWORD device_id,
DWORD *gratings
);

Parameters
device_id device id of the transducer to retrieve the grating size of.
gratings pointer to a variable of type DWORD that receives the number

of slots in the speed disk grating.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid then ST_DEVICE_INVALID will be returned, if speed isn’t
fitted ST_SPEED_NOT_FITTED will be returned, otherwise FT_FAILURE will
be returned.

Remarks
The device does not need to be open to use this function and it can be called
during the find device process, provided that the waitforcomplete parameter is
FALSE and the device id is less than the number of devices found.

The speed disk grating is used to measure speed, the number of slots in the
grating sets the measurement resolution.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 49

ST_GET_Data_Block
The ST_GET_Data_Block function returns a transducer data set from the referenced
transducer. The data set contains all the data that can be captured from the
transducer.

ST_STATUS ST_GET_Data_Block(

DWORD device_id,
ST_DATABLOCK *dat
);

Parameters
device_id device id of the transducer to retrieve data from.
dat pointer to a variable of type ST_DATABLOCK that receives the

complete transducer data set.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid then ST_DEVICE_INVALID will be returned, if the device
is not open ST_DEVICE_NOT_OPEN will be returned, otherwise
FT_FAILURE will be returned.

Remarks
The referenced device needs to be open before using this function. The
torque value will be in the native unit of measurement for the transducer. The
ST_DATABLOCK custom variable type is defined in the DLL Structures
section of this document. The peak values can be manually reset using the
ST_RESET_Peaks function.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 50

ST_GET_Data_Block_Extract
The ST_GET_Data_Block_Extract function returns the individual components of the
transducer data set from the referenced transducer. The data set contains all the
data that can be captured from the transducer.

ST_STATUS ST_GET_Data_Block_Extract(

DWORD device_id,
float *torque,
float *ptorque,
float *artorque,
float *cwptorque,
float *ccwptorque,
float *mintorque,
float *maxtorque,
DWORD *speedfast,
DWORD *pspeedfast,
DWORD *speedslow,
DWORD *pspeedslow,
float *powerwattsfast,
float *powerwattsslow,
float *powerhpfast,
float *powerhpslow,
float *ppowerwattsfast,
float *ppowerwattsslow,
float *ppowerhpfast,
float *ppowerhpslow,
float *tmpambient,
float *tmpshaft,
DWORD *ticktock
);

Parameters
device_id device id of the transducer to retrieve the data from.
torque pointer to a variable of type float that returns the current

torque value.
ptorque pointer to a variable of type float that returns the peak

torque value.
artorque pointer to a variable of type float that returns the auto

reset torque value.
cwptorque pointer to a variable of type float that returns the

clockwise peak torque value.
ccwptorque pointer to a variable of type float that returns the

counter-clockwise peak torque value.
mintorque pointer to a variable of type float that returns the

minimum torque value from the reference/reset point.
maxtorque pointer to a variable of type float that returns the

maximum torque value from the reference/reset point
speedfast pointer to a variable of type DWORD that returns the

current speed value from the fast capture mode.
pspeedfast pointer to a variable of type DWORD that returns the

peak speed value captured from the fast capture mode.
speedslow pointer to a variable of type DWORD that returns the

current speed value from the slow capture mode.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 51

pspeedslow pointer to a variable of type DWORD that returns the
peak speed value captured from the slow capture
mode.

powerwattsfast pointer to a variable of type float that returns the current
power value in watts, based on the speed from the fast
capture mode.

powerwattsslow pointer to a variable of type float that returns the current
power value in watts, based on the speed from the slow
capture mode.

powerhpfast pointer to a variable of type float that returns the current
power value in horse power, based on the speed from
the fast capture mode.

powerhpslow pointer to a variable of type float that returns the current
power value in horse power, based on the speed from
the slow capture mode.

ppowerwattsfast pointer to a variable of type float that returns the peak
power value in watts, based on the speed from the fast
capture mode.

ppowerwattsslow pointer to a variable of type float that returns the peak
power value in watts, based on the speed from the slow
capture mode.

ppowerhpfast pointer to a variable of type float that returns the peak
power value in horse power, based on the speed from
the fast capture mode.

ppowerhpslow pointer to a variable of type float that returns the peak
power value in horse power, based on the speed from
the slow capture mode.

tmpambient pointer to a variable of type float that returns the
transducers ambient temperature (degrees Celsius).

tmpshaft pointer to a variable of type float that returns the
transducers shaft temperature (degrees Celsius).

ticktock pointer to a variable of type DWORD that returns the
elapsed time in milliseconds from the time stamp
start/reset point.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid then ST_DEVICE_INVALID will be returned, if the device
is not open ST_DEVICE_NOT_OPEN will be returned, otherwise
FT_FAILURE will be returned.

Remarks
The referenced device needs to be open before using this function. The
torque value will be in the native unit of measurement for the transducer. The
ticktock parameter is part of a time stamp system added to aid
LabView/Torqview accurately time stamp readings, refer to the
ST_GET_TimeStamp and ST_Reset_TimeStamp function descriptions and
the Time Stamp section of this document. The peak values can be manually
reset using the ST_RESET_Peaks function.

The ST_GET_Data_Block_Extract function differs from the
ST_GET_Data_Block function, one returns the components in a single block
as a single parameter, while the other returns the components individually as
separate parameters. The ST_GET_Data_Block_Extract function can be
used with languages that cannot create custom types.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 52

ST_GET_Torque_Select
The ST_GET_Torque_Select function selects a specified torque type and returns its
value from the referenced transducer.

ST_STATUS ST_GET_Torque_Select (

DWORD device_id,
DWORD torqueselect,
float *dat
);

Parameters
device_id device id of the transducer to retrieve data from.
torqueselect selects the torque value to be returned in dat. The table below

shows the parameter values for the different torque types.

Value Torque Type

0 Current torque

1 Peak torque

2 Peak torque with auto reset

3 Peak clockwise torque

4 Peak counter-clockwise torque

5 Maximum torque from reference/reset

6 Minimum torque from reference/reset

7
Maximum/Minimum torque from reference/reset
(MINMAX_TMP – see remarks)

dat pointer to a variable of type float that returns the torque value

selected by torqueselect.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid then ST_DEVICE_INVALID will be returned, if the device
is not open ST_DEVICE_NOT_OPEN will be returned, otherwise
FT_FAILURE will be returned.

Remarks
The referenced device needs to be open before using this function. If
selecting torque type 7, you will need to pass a MINMAX_TMP structure and
cast the pointer to a float. The torque value will be in the native unit of
measurement for the transducer. The peak torque values can be manually
reset using the ST_RESET_Peaks function.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 53

ST_GET_Torque_Select_Convert
The ST_GET_Torque_Select_Convert function selects a specified torque type,
converts the torque value into the unit of measurement specified and returns the
converted value for the referenced transducer.

ST_STATUS ST_GET_Torque_Select_Convert (

DWORD device_id,
DWORD torqueselect,
DWORD convertto,
float *dat
);

Parameters
device_id device id of the transducer to retrieve data from.
torqueselect selects the torque value to be converted and returned in dat.

The table below shows the parameter values for the different
torque types.

Value Torque Type

0 Current torque

1 Peak torque

2 Peak torque with auto reset

3 Peak clockwise torque

4 Peak counter-clockwise torque

5 Maximum torque from reference/reset

6 Minimum torque from reference/reset

7
Maximum/Minimum torque from reference/reset
(MINMAX_TMP – see remarks)

convertto selects the unit of measurement that the selected torque value

will be converted to. The table below shows the parameter
values for the different units of measurement.

Value Unit

0 ozf.in

1 Ibf.in

2 Ibf.ft

3 gf.cm

4 Kgf.cm

5 Kgf.m

6 mN.m

7 N.m

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 54

dat pointer to a variable of type float that returns the converted
torque value selected by torqueselect.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid then ST_DEVICE_INVALID will be returned, if the device
is not open ST_DEVICE_NOT_OPEN will be returned, otherwise
FT_FAILURE will be returned.

Remarks
The referenced device needs to be open before using this function. If
selecting torque type 7, you will need to pass a MINMAX_TMP structure and
cast the pointer to a float. The peak torque values can be manually reset
using the ST_RESET_Peaks function.

ST_GET_Torque
The ST_GET_Torque function returns the current torque value for the referenced
transducer.

ST_STATUS ST_GET_Torque(

DWORD device_id,
float *dat
);

Parameters
device_id device id of the transducer to retrieve data from.
dat pointer to a variable of type float that receives the current

torque value.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid then ST_DEVICE_INVALID will be returned, if the device
is not open ST_DEVICE_NOT_OPEN will be returned, otherwise
FT_FAILURE will be returned.

Remarks
The referenced device needs to be open before using this function. The
torque value will be in the native unit of measurement for the transducer.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 55

ST_GET_Torque_Peak
The ST_GET_Torque_Peak function returns the peak torque value for the
referenced transducer.

ST_STATUS ST_GET_Torque_Peak(

DWORD device_id,
float *dat
);

Parameters
device_id device id of the transducer to retrieve data from.
dat pointer to a variable of type float that receives the peak torque

value.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid then ST_DEVICE_INVALID will be returned, if the device
is not open ST_DEVICE_NOT_OPEN will be returned, otherwise
FT_FAILURE will be returned.

Remarks
The referenced device needs to be open before using this function. The
torque value will be in the native unit of measurement of the transducer. The
peak torque value can be manually reset using the ST_RESET_Peaks
function.

ST_GET_Torque_Auto_Reset
The ST_GET_Torque_Auto_Reset function returns the peak torque with auto reset
value for the referenced transducer.

ST_STATUS ST_GET_Torque_Auto_Reset(

DWORD device_id,
float *dat
);

Parameters
device_id device id of the transducer to retrieve data from.
dat pointer to a variable of type float that receives the peak torque

with auto reset value.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid then ST_DEVICE_INVALID will be returned, if the device
is not open ST_DEVICE_NOT_OPEN will be returned, otherwise
FT_FAILURE will be returned.

Remarks
The referenced device needs to be open before using this function. The
torque value will be in the native unit of measurement of the transducer. The
Peak Torque with auto reset value can be manually reset using the
ST_RESET_Peaks function.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 56

ST_GET_Torque_Peak_MinMax
The ST_GET_Torque_Peak_MinMax function returns the maximum and minimum
torque value from a reference/reset point for the referenced transducer.

ST_STATUS ST_GET_Torque_Peak_MinMax(

DWORD device_id,
MINMAX_TMP *dat,
BOOL reset_minmax
);

Parameters
device_id device id of the transducer to retrieve data from.
dat pointer to a variable of type MINMAX_TMP that

receives the minimum/maximum torque values.
reset_minmax if TRUE the reference point for the minimum/maximum

torque values is reset after value retrieval. If FALSE the
minimum/maximum torque values are not reset.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid then ST_DEVICE_INVALID will be returned, if the device
is not open ST_DEVICE_NOT_OPEN will be returned, otherwise
FT_FAILURE will be returned.

Remarks
The referenced device needs to be open before using this function. The
torque value will be in the native unit of measurement of the transducer. The
reference point for the minimum/maximum values can be reset using the
reset_minmax parameter or by using the ST_RESET_Peaks function.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 57

ST_GET_Speed_Fast
The ST_GET_Speed_Fast function returns the current fast mode speed value for the
referenced transducer.

ST_STATUS ST_GET_Speed_Fast(

DWORD device_id,
DWORD *dat
);

Parameters
device_id device id of the transducer to retrieve data from.
dat pointer to a variable of type DWORD that receives the current

fast mode speed value.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid then ST_DEVICE_INVALID will be returned, if the device
is not open ST_DEVICE_NOT_OPEN will be returned, otherwise
FT_FAILURE will be returned.

Remarks
The referenced device needs to be open before using this function. Refer to
the Speed Modes section for a definition of the different speed capture
modes.

ST_GET_Speed_Slow
The ST_GET_Speed_Slow function returns the current slow mode speed value for
the referenced transducer.

ST_STATUS ST_GET_Speed_Slow(

DWORD device_id,
DWORD *dat
);

Parameters
device_id device id of the transducer to retrieve data from.
dat pointer to a variable of type DWORD that receives the current

slow mode speed value.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid then ST_DEVICE_INVALID will be returned, if the device
is not open ST_DEVICE_NOT_OPEN will be returned, otherwise
FT_FAILURE will be returned.

Remarks
The referenced device needs to be open before using this function. Refer to
the Speed Modes section for a definition of the different speed capture
modes.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 58

ST_GET_Power_In_Watts
The ST_GET_Power_In_Watts function returns the current power value in watts
derived from the current torque and speed values for the referenced transducer.

ST_STATUS ST_GET_Power_In_Watts(

DWORD device_id,
float *dat,
DWORD speed_mode
);

Parameters
device_id device id of the transducer to retrieve data from.
dat pointer to a variable of type float that receives the current

power value in watts.
speed_mode selects the speed capture mode that the power value should

be calculated from. The table below shows the parameter
values for the different speed modes

Value Speed Modes

0 Slow

1 Fast

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid then ST_DEVICE_INVALID will be returned, if the device
is not open ST_DEVICE_NOT_OPEN will be returned, otherwise
FT_FAILURE will be returned.

Remarks
The referenced device needs to be open before using this function. Refer to
the Speed Modes section for a definition of the different speed capture
modes.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 59

ST_GET_Power_In_HP
The ST_GET_Power_In_HP function returns the current power value in horse power
derived from the current torque and speed values for the referenced transducer.

ST_STATUS ST_GET_Power_In_HP(

DWORD device_id,
float *dat,
DWORD speed_mode
);

Parameters
device_id device id of the transducer to retrieve data from.
dat pointer to a variable of type float that receives the current

power value in horse power.
speed_mode selects the speed capture mode that the power value should

be calculated from. The table below shows the parameter
values for the different speed modes

Value Speed Modes

0 Slow

1 Fast

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid then ST_DEVICE_INVALID will be returned, if the device
is not open ST_DEVICE_NOT_OPEN will be returned, otherwise
FT_FAILURE will be returned.

Remarks
The referenced device needs to be open before using this function. Refer to
the Speed Modes section for a definition of the different speed capture
modes.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 60

ST_GET_Temperature_Ambient
The ST_GET_Temperature_Ambient function returns the measured ambient
temperature for the referenced transducer.

ST_STATUS ST_GET_Temperature_Ambient(

DWORD device_id,
float *dat
);

Parameters
device_id device id of the transducer to retrieve data from.
dat pointer to a variable of type float that receives the ambient

temperature in degrees Celsius.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid then ST_DEVICE_INVALID will be returned, if the device
is not open ST_DEVICE_NOT_OPEN will be returned, otherwise
FT_FAILURE will be returned.

Remarks
The referenced device needs to be open before using this function. Refer to
the Temperature Sensors section for more information.

ST_GET_Temperature_Shaft
The ST_GET_Temperature_Shaft function returns the measured shaft temperature
for the referenced transducer.

ST_STATUS ST_GET_Temperature_Shaft(

DWORD device_id,
float *dat
);

Parameters
device_id device id of the transducer to retrieve data from.
dat pointer to a variable of type float that receives the shaft

temperature in degrees Celsius.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid then ST_DEVICE_INVALID will be returned, if the device
is not open ST_DEVICE_NOT_OPEN will be returned, otherwise
FT_FAILURE will be returned.

Remarks
The referenced device needs to be open before using this function. Refer to
the Temperature Sensors section for more information.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 61

ST_GET_Temperature_Internal
The ST_GET_Temperature_Internal function returns the measured internal
temperature for the referenced transducer.

ST_STATUS ST_GET_Temperature_Internal(

DWORD device_id,
float *dat
);

Parameters
device_id device id of the transducer to retrieve data from.
dat pointer to a variable of type float that receives the internal

temperature in degrees Celsius.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid then ST_DEVICE_INVALID will be returned, if the device
is not open ST_DEVICE_NOT_OPEN will be returned, otherwise
FT_FAILURE will be returned.

Remarks
The referenced device needs to be open before using this function. Refer to
the Temperature Sensors section for more information.

ST_GET_Torque_Filter
The ST_GET_Torque_Filter function returns the current torque filter setting.

ST_STATUS ST_GET_Torque_Filter(

DWORD device_id,
DWORD *filtervalue
);

Parameters
device_id device id of the transducer to retrieve data from.
filtervalue pointer to a variable of type DWORD that receives the current

torque filter setting. A filter value of 0 equals OFF.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid then ST_DEVICE_INVALID will be returned, if the device
is not open ST_DEVICE_NOT_OPEN will be returned, otherwise
FT_FAILURE will be returned.

Remarks
The referenced device needs to be open before using this function.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 62

ST_SET_Torque_Filter
The ST_SET_Torque_Filter function configures the torque filter.

ST_STATUS ST_SET_Torque_Filter(

DWORD device_id,
DWORD filtervalue,
BOOL save
);

Parameters
device_id device id of the transducer to configure.
filtervalue configures the torque filter setting, a value greater than zero

sets the number of samples used in the filter; valid values are
0(OFF), 2, 4, 8, 16, 32, 64, 128, and 256.

save if TRUE the specified filter will be enabled, saved and retained
across power cycles of the transducer. If FALSE the specified
setting will be enabled, but on reset the transducer will revert
back to the default or previously saved setting.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid then ST_DEVICE_INVALID will be returned, if the device
is not open ST_DEVICE_NOT_OPEN will be returned, otherwise
FT_FAILURE will be returned.

Remarks
The referenced device needs to be open before using this function.

ST_GET_Speed_Filter
The ST_GET_Speed _Filter function returns the current speed filter setting.

ST_STATUS ST_GET_Speed _Filter(

DWORD device_id,
DWORD *filtervalue
);

Parameters
device_id device id of the transducer to retrieve data from.
filtervalue pointer to a variable of type DWORD that receives the current

speed filter setting. A filter value of 0 equals OFF.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid then ST_DEVICE_INVALID will be returned, if the device
is not open ST_DEVICE_NOT_OPEN will be returned, if speed isn’t fitted
ST_SPEED_NOT_FITTED will be returned, otherwise FT_FAILURE will be
returned.

Remarks
The referenced device needs to be open before using this function.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 63

ST_SET_Speed _Filter
The ST_SET_Speed _Filter function configures the speed filter.

ST_STATUS ST_SET_Speed _Filter(

DWORD device_id,
DWORD filtervalue,
BOOL save
);

Parameters
device_id device id of the transducer to configure.
filtervalue configures the speed filter setting, a value greater than zero

sets the number of samples used in the filter; valid values are
0(OFF), 2, 4, 8, 16, 32, 64, 128, and 256.

save if TRUE the specified filter will be enabled, saved and retained
across power cycles of the transducer. If FALSE the specified
setting will be enabled, but on reset the transducer will revert
back to the default or previously saved setting.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid then ST_DEVICE_INVALID will be returned, if the device
is not open ST_DEVICE_NOT_OPEN will be returned, if speed isn’t fitted
ST_SPEED_NOT_FITTED will be returned, otherwise FT_FAILURE will be
returned.

Remarks
The referenced device needs to be open before using this function.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 64

ST_RESET_Peaks
The ST_RESET_Peaks function resets the stored torque, speed and power peak
values as selected by the specified flags.

ST_STATUS ST_RESET_Peaks(

DWORD device_id,
DWORD reset_flags
);

Parameters
device_id device id of the transducer to access.
reset_flags selects the stored peak value(s) to be reset. Peak values are

selected by passing the flag value of the peak to be reset.
Multiple peak values can be reset at the same time by
combining flags, this is done by adding or OR’ing the required
flag values together.

Flag
Value

Value to be reset Description

0x4 Peak torque Resets the peak torque to zero.

0x8 Peak torque with auto reset
Resets the peak torque with
auto reset to zero.

0x10 Peak torque CW
Resets the peak torque
clockwise to zero.

0x20 Peak torque CCW
Resets the peak torque counter-
clockwise to zero.

0x40 Peak min max
Resets the min and max values
to the current torque value.

0x80 Peak fast mode speed
Resets the peak fast mode
speed to zero.

0x100 Peak slow mode speed
Resets the peak slow mode
speed to zero.

0x200 Peak fast mode power
Resets the peak power using
the fast speed mode to zero.

0x400 Peak slow mode power
Resets the peak power using
the slow speed mode to zero.

0x800 Angle (rotations & degrees)
Resets the rotations and
degrees to zero.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid then ST_DEVICE_INVALID will be returned, if the device
is not open ST_DEVICE_NOT_OPEN will be returned, otherwise
FT_FAILURE will be returned.

Remarks
The referenced device needs to be open before using this function. Reset all
values by sending 0xFFC as the value for reset_flags.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 65

ST_Zero_Transducer
The ST_Zero_Transducer function zeros the tranducers torque value, this is done
by recording the current torque value as an offset, the offset is then subtracted from
all subsequant torque readings.

ST_STATUS ST_Zero_Transducer(

DWORD device_id
);

Parameters
device_id device id of the transducer to zero.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid then ST_DEVICE_INVALID will be returned, if the device
is not open ST_DEVICE_NOT_OPEN will be returned, otherwise
FT_FAILURE will be returned.

Remarks
The referenced device needs to be open before using this function. The zero
offset is lost when the transducer is power cycled.

ST_ZeroAverage_Transducer
The ST_ZeroAverage_Transducer function zeros the tranducers torque value using
a 32 sample average. The current torque value is sampled 32 times and averaged,
the averaged value is then recorded as an offset and is subtracted from all
subsequant torque readings.

ST_STATUS ST_ZeroAverage_Transducer(

DWORD device_id
);

Parameters
device_id device id of the transducer to zero.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid then ST_DEVICE_INVALID will be returned, if the device
is not open ST_DEVICE_NOT_OPEN will be returned, otherwise
FT_FAILURE will be returned.

Remarks
The referenced device needs to be open before using this function. The zero
offset is lost when the transducer is power cycled.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 66

ST_Reset_TimeStamp
The ST_Reset_TimeStamp function initialises and resets the time stamp counter.
Calls to ST_GET_TimeStamp function will return elapsed time from this reset point.

void ST_Reset_TimeStamp(void);

Parameters
None

Return value
None.

Remarks
For more information on the time stamp functionality refer to the Time Stamp
section of this document

ST_GET_TimeStamp
The ST_GET_TimeStamp function returns the elapsed time from start/reset point.

DWORD ST_GET_TimeStamp (void);

Parameters
None

Return value
Elapsed time in milliseconds from the start/reset point.

Remarks
If the TimeStamp counter has not been initialised using the
ST_Reset_TimeStamp function, calls to this function will always return zero.
For more information on the time stamp functionality refer to the Time Stamp
section of this document.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 67

ST_Capture_Enable
The ST_Capture_Enable function initialises and starts the automated capture mode.
Once started data is captured and buffered at the rate requested. Data is extracted
from the buffer by using ST_GET_Capture_Data and the capture is stopped by
using ST_Capture_Disable.

ST_STATUS ST_Capture_Enable (

DWORD device_id,
DWORD caprate
);

Parameters
device_id device id of the transducer to configure.
caprate the data capture rate to be used by the capture mode.

The value should be specified as the number of
captures per second.

Return value
If the function completes successfully ST_SUCCESS will be returned and the
capture proccess will have been started. If the device_id is invalid then
ST_DEVICE_INVALID will be returned, if the device is not open
ST_DEVICE_NOT_OPEN will be returned, otherwise FT_FAILURE will be
returned.

Remarks
The referenced device needs to be open before using this function. The
caprate parameter must be between 1 and the maximum supported capture
rate. Use the ST_GET_Capture_Rate function to retieve the maximum
capture rate.

The requested capture rate may not be possible due to the resolution of the
capture timer. The DLL divides the timer value for a second by the capture
rate, and uses that value as the timer value. The operating system timers
must be capable of a 1ms resolution for the capture system to work.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 68

ST_Capture_Disable
The ST_Capture_Disable function stops an active data capture mode and frees all
allocated resources. Captured data which has not been extracted will be purged.

ST_STATUS ST_Capture_Disable (

DWORD device_id
);

Parameters
device_id device id of the transducer to configure.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid then ST_DEVICE_INVALID will be returned, if the device
is not open ST_DEVICE_NOT_OPEN will be returned, otherwise
FT_FAILURE will be returned.

Remarks
The referenced device needs to be open and the capture mode active before
this function can be used.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 69

ST_GET_Capture_Data
The ST_GET_Capture_Data function extracts data from an active data capture
mode. Data is stored and transferred as record blocks, the ST_GET_Capture_Data
function transfers these record blocks from an internal ring buffer to the users record
array.

ST_STATUS ST_GET_Capture_Data (

DWORD device_id,
CAPREC *record_ptr,
DWORD records,
DWORD *recordno
);

Parameters
device_id device id of the transducer where there is an active

data capture mode.
record_ptr pointer to an array of CAPREC records.
records number of records in the array pointed to by record_ptr.
recordno pointer to a variable of type DWORD that receives the

number of records written to the array pointed to by
record_ptr.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid then ST_DEVICE_INVALID will be returned, if the device
is not open ST_DEVICE_NOT_OPEN will be returned, if there is no active
data capture mode ST_CMD_INACTIVE will be returned.

ST_BUFFER_OVERFLOW will be returned if the primary and secondary
internal buffers become fully consumed. This would occur if the
ST_GET_Capture_Data poll rate is too low compared to the selected capture
rate. The capture mode will be terminated if this occurs.

ST_NO_COMMS_IN_PROCESS will be returned if the data feed from the
transducer stops. The capture mode will be terminated if this occurs.

FT_FAILURE will be returned for all other errors occurs.

Remarks
The referenced device needs to be open and the capture mode active before
this function can be used. The size of the array passed to
ST_GET_Capture_Data should be carefully considered and take in to acount
the configured capture rate and time between calls to
ST_GET_Capture_Data.

ORT/RWT Series DLL Programmer’s Guide (RWT3649IM)

Revision 7, December 2018 - Page 70

ST_GET_Capture_Rate
The ST_GET_Capture_Rate function retrieves the maximum capture rate that can
be used with the data capture mode.

ST_STATUS ST_GET_Capture_Rate(

DWORD device_id,
DWORD *caprate
);

Parameters
device_id device id of the transducer to access.
caprate pointer to a variable of type DWORD that receives the

maximum data capture rate supported by the
transducer/DLL.

Return value
If the function completes successfully ST_SUCCESS will be returned, if the
device_id is invalid then ST_DEVICE_INVALID will be returned, if the device
is not open ST_DEVICE_NOT_OPEN will be returned, if the operating system
does not support a 1ms timer resolution then
ST_WINDOWS_TIMER_RESOLUTION will be returned, otherwise
FT_FAILURE will be returned.

Remarks
The referenced device needs to be open before this function can be used.
The operating system timers must be capable of a 1ms resolution for the
capture system to work.

